777精品出轨人妻国产,熟女av人妻一区二区三四区,国产精品无码中文在线av,美脚パンスト女教师在线观看

晉升業內新寵兒,MoE模型給了AI行業兩條關鍵出路

原創 收藏 評論
舉報 2024-07-11

1.png

文 | 智能相對論

作者 | 陳泊丞

今年以來,MoE模型成了AI行業的新寵兒。

一方面,越來越多的廠商在自家的閉源模型上采用了MoE架構。在海外,OpenAI的GPT-4、谷歌的Gemini、Mistral AI的Mistral、xAI的Grok-1等主流大模型都采用了MoE架構。

而在國內,昆侖萬維推出的天工3.0、浪潮信息發布的源2.0-M32、通義千問團隊發布的Qwen1.5-MoE-A2.7B、MiniMax全量發布的abab6、幻方量化旗下的DeepSeek發布的DeepSeek-MoE 16B等等也都屬于MoE模型。

另一方面,在MoE模型被廣泛應用的同時,也有部分廠商爭先開源了自家的MoE模型。前不久,昆侖萬維宣布開源2千億參數的Skywork-MoE。而在此之前,浪潮信息的源2.0-M32、DeepSeek的DeepSeek-MoE 16B等,也都紛紛開源。

為什么MoE模型如此火爆,備受各大廠商的青睞?在開源的背后,MoE模型又是以什么樣的優勢使各大主流廠商成為其擁躉,試圖作為改變AI行業的利器?

MoE模型火爆的背后:全新的AI解題思路

客觀來說,MoE模型的具體工作原理更接近中國的一句古語“術業有專攻”,通過把任務分門別類,然后分給多個特定的“專家”進行解決。

它的工作流程大致如此,首先數據會被分割為多個區塊(token),然后通過門控網絡技術(Gating Network)再把每組數據分配到特定的專家模型(Experts)進行處理,也就是讓專業的人處理專業的事,最終匯總所有專家的處理結果,根據關聯性加權輸出答案。

當然,這只是一個大致的思路,關于門控網絡的位置、模型、專家數量、以及MoE與Transformer架構的具體結合方案,各家方案都不盡相同,也逐漸成為各家競爭的方向——誰的算法更優,便能在這個流程上拉開MoE模型之間的差距。

像浪潮信息就提出了基于注意力機制的門控網絡(Attention Router),這種算法結構的亮點在于可以通過局部過濾增強的注意力機制(LFA, Localized Filtering-based Attention),率先學習相鄰詞之間的關聯性,然后再計算全局關聯性的方法,能夠更好地學習到自然語言的局部和全局的語言特征,對于自然語言的關聯語義理解更準確,從而更好地匹配專家模型,保證了專家之間協同處理數據的水平,促使模型精度得以提升。

2.png

基于注意力機制的門控網絡(Attention Router)

拋開目前各家廠商在算法結構上的創新與優化不談,MoE模型這種工作思路本身所帶來的性能提升就非常顯著——通過細粒度的數據分割和專家匹配,從而實現了更高的專家專業化和知識覆蓋。

這使得MoE模型在處理處理復雜任務時能夠更準確地捕捉和利用相關知識,提高了模型的性能和適用范圍。因此,「智能相對論」嘗試了去體驗天工3.0加持的AI搜索,就發現對于用戶較為籠統的問題,AI居然可以快速的完成拆解,并給出多個項目參數的詳細對比,屬實是強大。

3.png

天工AI搜索提問“對比一下小米su7和特斯拉model3”所得出的結果

由此我們可以看到,AI在對比兩款車型的過程中,巧妙地將這一問題拆解成了續航里程、動力性能、外觀設計、內飾設計、智能化與自動駕駛、市場表現與用戶口碑、價格等多個項目,分別處理得出較為完整且專業的答案。

這便是“術業有專攻”的優勢——MoE模型之所以受到越來越多廠商的關注,首要的關鍵就在于其所帶來的全新解決問題的思路促使模型的性能得到了較為顯著的提高。特別是伴隨著行業復雜問題的涌現,這一優勢將使得MoE模型得到更廣泛的應用。

各大廠商爭先開源MoE模型:解決AI算力荒的另一條路徑

開源的意義在于讓MoE模型更好的普及。那么,對于市場而言,為什么要選擇MoE模型?

拋開性能來說,MoE模型更突出的一點優勢則在于算力效率的提升。

DeepSeek-MoE 16B在保持與7B參數規模模型相當的性能的同時,只需要大約40%的計算量。而37億參數的源2.0-M32在取得與700億參數LLaMA3相當性能水平的同時,所消耗的算力也僅為LLaMA3的1/19。

也就意味著,同樣的智能水平,MoE模型可以用更少的計算量和內存需求來實現。這得益于MoE模型在應用中并非要完全激活所有專家網絡,而只需要激活部分專家網絡就可以解決相關問題,很好避免了過去“殺雞用牛刀”的尷尬局面。

舉個例子,盡管DeepSeek-MoE 16B的總參數量為16.4B,但每次推理只激活約2.8B的參數。與此同時,它的部署成本較低,可以在單卡40G GPU上進行部署,這使得它在實際應用中更加輕量化、靈活且經濟。

在當前算力資源越來越緊張的“算力荒”局面下,MoE模型的出現和應用可以說為行業提供了一個較為現實且理想的解決方案。

更值得一提的是,MoE模型還可以輕松擴展到成百上千個專家,使得模型容量極大增加,同時也允許在大型分布式系統上進行并行計算。由于各個專家只負責一部分數據處理,因此在保持模型性能的同時,又能顯著降低了單個節點的內存和計算需求。

如此一來,AI能力的普惠便有了非常可行的路徑。這樣的特性再加上廠商開源,將促使更多中小企業不需要重復投入大模型研發以及花費過多算力資源的情況下便能接入AI大模型,獲取相關的AI能力,促進技術普及和行業創新。

當然,在這個過程中,MoE模型廠商們在為市場提供開源技術的同時,也有機會吸引更多企業轉化成為付費用戶,進而走通商業化路徑。畢竟,MoE模型的優勢擺在眼前,接下來或許將有更多的企業斗都會嘗試新的架構來拓展AI能力,越早開源越能吸引更多市場主體接觸并參與其中。

但是,開源最關鍵的優勢還是在于MoE模型對當前算力問題的解決。或許,隨著MoE模型被越來越多的企業所接受并應用,行業在獲得相應AI能力的同時也不必困頓于算力資源緊張的問題了。

寫在最后

MoE大模型作為當前人工智能領域的技術熱點,其獨特的架構和卓越的性能為人工智能的發展帶來了新的機遇。不管是應用還是開源,隨著技術的不斷進步和應用場景的不斷拓展,MoE大模型有望在更多領域發揮巨大的潛力。

MoE模型的本質在于為AI行業的發展提供了兩條思路,一是解決應用上的性能問題,讓AI有了更強大的解題思路。二是解決算力上的欠缺問題,讓AI有了更全面的發展空間。由此來看MoE模型能成為行業各大廠商的寵兒,也是水到渠成的事情。

*本文圖片均來源于網絡

此內容為【智能相對論】原創,

僅代表個人觀點,未經授權,任何人不得以任何方式使用,包括轉載、摘編、復制或建立鏡像。

部分圖片來自網絡,且未核實版權歸屬,不作為商業用途,如有侵犯,請作者與我們聯系。

?AI產業新媒體;

?澎湃新聞科技榜單月度top5;

?文章長期“霸占”鈦媒體熱門文章排行榜TOP10;

?著有《人工智能 十萬個為什么》

?【重點關注領域】智能家電(含白電、黑電、智能手機、無人機等AIoT設備)、智能駕駛、AI+醫療、機器人、物聯網、AI+金融、AI+教育、AR/VR、云計算、開發者以及背后的芯片、算法等。


本文系作者授權數英發表,內容為作者獨立觀點,不代表數英立場。
轉載請在文章開頭和結尾顯眼處標注:作者、出處和鏈接。不按規范轉載侵權必究。
本文系作者授權數英發表,內容為作者獨立觀點,不代表數英立場。
未經授權嚴禁轉載,授權事宜請聯系作者本人,侵權必究。
本內容為作者獨立觀點,不代表數英立場。
本文禁止轉載,侵權必究。
本文系數英原創,未經允許不得轉載。
授權事宜請至數英微信公眾號(ID: digitaling) 后臺授權,侵權必究。

    評論

    文明發言,無意義評論將很快被刪除,異常行為可能被禁言
    DIGITALING
    登錄后參與評論

    評論

    文明發言,無意義評論將很快被刪除,異常行為可能被禁言
    800

    推薦評論

    暫無評論哦,快來評論一下吧!

    全部評論(0條)

    主站蜘蛛池模板: 磴口县| 绵阳市| 日土县| 凤阳县| 当涂县| 安乡县| 静海县| 洪泽县| 宝丰县| 通江县| 济源市| 宜兰县| 常州市| 武汉市| 敦煌市| 德阳市| 赤城县| 尚志市| 鹤山市| 郴州市| 稻城县| 延川县| 永康市| 德令哈市| 昌黎县| 隆子县| 通化市| 东乌| 建宁县| 宁南县| 依安县| 涞水县| 玛多县| 雅安市| 平乐县| 乌拉特后旗| 天全县| 同仁县| 教育| 融水| 正镶白旗|